B.Sc. DEGREE EXAMINATION - MATHEMATICS FIRST SEMESTER - APRIL 2013
 MT 1500-ALGEBRA, ANALY. GEO., CALCULUS \& TRIGONOMETRY

Date: 09/05/2013
Dept. No. \square Max. : 100 Marks
Time: 1:00-4:00
PART - A
($10 \times 2=20$)

Answer ALL questions:

1. Write down the $\mathrm{n}^{\text {th }}$ derivative of $x^{2} e^{5 x}$.
2. Find the polar subtangent and polar subnormal of the curve $r=a e^{\theta \cot \alpha}$.
3. Write the Cartesian formula for the radius of curvature.
4. Define evolute of a curve.
5. If α, β, γ are the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$, Find the value of $\sum \alpha^{2}$.
6. Form the equation one of whose roots is $\sqrt{5}+\sqrt{3}$.
7. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$. .
8. Write the expansion for $\cos n \theta$.
9. Find the polar of $(3,4)$ with respect to $y^{2}=4 a x$.
10. Define an asymptote of a hyperbola.

PART - B

Answer any FIVE questions:

11. Find the slope of the tangent with the initial line for the cardioid $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.
12. Find the radius of curvature at the point θ of the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$.
13. Find the (p-r) equation of $r \theta=a$.
14. Solve the equation $x^{3}-19 x^{2}+114 x-216=0$, given that the roots are in GP.
15. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, prove that $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)=r-p q$.
16. Expand $\sin ^{3} \theta \cos ^{4} \theta$ in terms of multiples of θ.
17. P and Q are extremities of two conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. and S is the focus. Prove that $P Q^{2}-(S P-S Q)^{2}=2 b^{2}$.
18. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

PART-C

Answer Any TWO Questions:

19. a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ then prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
b) Find the angle of intersection of the curves $r=\frac{a}{1+\cos \theta}$ and $r=\frac{b}{1-\cos \theta}$.
20. a) Find the evolutes of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Solve $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=0$.
21. a) Calculate to two places of decimals the positive root of the equation $x^{3}+24 x-50=0$ by Horner's method.
b) If $\tan (\alpha+i \beta)=x+i y$ prove that $x^{2}+y^{2}+2 x \cot 2 \alpha=1$.
22. a) Prove that $1-\frac{1}{2} \cos \theta+\frac{1 \cdot 3}{2 \cdot 4} \cos 2 \theta-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cos 3 \theta+\cdots \infty=\frac{\cos \frac{\theta}{4}}{\sqrt{2 \cos \frac{\theta}{2}}}$.
b) If a hyperbola be a rectangular hyperbola and its equation be $x y=c^{2}$, prove that the locus of the middle points of chords of constant length $2 l$ is $\left(x^{2}+y^{2}\right)\left(x y-c^{2}\right)=l^{2} x y$.
