LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – APRIL 2013

MT 1500 - ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY

Dept. No. Date: 09/05/2013 Max.: 100 Marks Time: 1:00 - 4:00

PART – A

(5 x8 = 40)

Answer ALL questions:

- 1. Write down the nth derivative of $x^2 e^{5x}$.
- 2. Find the polar subtangent and polar subnormal of the curve $r = ae^{\theta \cot \alpha}$.
- 3. Write the Cartesian formula for the radius of curvature.
- 4. Define evolute of a curve.
- 5. If α, β, γ are the roots of the equation $x^3 6x^2 + 11x 6 = 0$, Find the value of $\sum \alpha^2$.
- 6. Form the equation one of whose roots is $\sqrt{5} + \sqrt{3}$.
- 7. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 8. Write the expansion for $\cos n\theta$.
- 9. Find the polar of (3, 4) with respect to $y^2 = 4ax$.
- 10. Define an asymptote of a hyperbola.

<u> PART – B</u>

Answer any FIVE questions:

- 11. Find the slope of the tangent with the initial line for the cardioid $r = a(1 \cos \theta)$ at $\theta = \frac{\pi}{2}$.
- 12. Find the radius of curvature at the point θ of the curve

 $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta).$

- 13. Find the (p-r) equation of $r\theta = a$.
- 14. Solve the equation $x^3 19x^2 + 114x 216 = 0$, given that the roots are in GP.

15. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, prove that $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = r - pq$.

16. Expand $\sin^3 \theta \cos^4 \theta$ in terms of multiples of θ .

17. P and Q are extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. and S is the focus. Prove that $PQ^2 - (SP - SQ)^2 = 2b^2$.

18. Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$.

$$(10 \ge 2 = 20)$$

PART-C

Answer Any TWO Questions:

$$(2 \times 20 = 40)$$

19. a) If $y = (x + \sqrt{1 + x^2})^m$ then prove that $(1 + x^2) y_{n+2} + (2n+1)x y_{n+1} + (n^2 - m^2) y_n = 0$.

b) Find the angle of intersection of the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$.

- 20. a) Find the evolutes of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. b) Solve $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$.
- 21. a) Calculate to two places of decimals the positive root of the equation $x^3 + 24x 50 = 0$ by Horner's method.
 - b) If $\tan(\alpha + i\beta) = x + iy$ prove that $x^2 + y^2 + 2x \cot 2\alpha = 1$.

22. a) Prove that
$$1 - \frac{1}{2}\cos\theta + \frac{1\cdot 3}{2\cdot 4}\cos 2\theta - \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\cos 3\theta + \dots = \frac{\cos\frac{\theta}{4}}{\sqrt{2\cos\frac{\theta}{2}}}.$$

b) If a hyperbola be a rectangular hyperbola and its equation be $xy = c^2$, prove that the locus of the middle points of chords of constant length 2l is $(x^2 + y^2)(xy - c^2) = l^2xy$.

\$\$\$\$\$\$